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a_j Inverse rounding function

Description

Define the intervals associated with y = j based on the flooring function. The function returns -Inf
for j = 0 (or smaller) and Inf for any j >= y_max + 1, where y_max is a known upper bound on the
data y (if specified).

Usage

a_j(j, y_max = Inf)

Arguments

j the integer-valued input(s)

y_max a fixed and known upper bound for all observations; default is Inf

Value

The (lower) interval endpoint(s) associated with j.

Examples

# Standard cases:
a_j(1)
a_j(20)

# Boundary cases:
a_j(0)
a_j(20, y_max = 15)
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bam_star Fit Bayesian Additive STAR Model with MCMC

Description

Run the MCMC algorithm for a STAR Bayesian additive model The transformation can be known
(e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically) for greater flexibility.

Usage

bam_star(
y,
X_lin,
X_nonlin,
splinetype = "orthogonal",
transformation = "np",
y_max = Inf,
nsave = 1000,
nburn = 1000,
nskip = 0,
save_y_hat = FALSE,
verbose = TRUE

)

Arguments

y n x 1 vector of observed counts

X_lin n x pL matrix of predictors to be modelled as linear

X_nonlin n x pNL matrix of predictors to be modelled as nonlinear

splinetype Type of spline to use for modelling the nonlinear predictors; must be either
"orthogonal" (orthogonalized splines–the default) or "thinplate" (low-rank thin
plate splines)

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)
• "ispline" (transformation is modeled as unknown, monotone function using

I-splines)

y_max a fixed and known upper bound for all observations; default is Inf
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nsave number of MCMC iterations to save
nburn number of MCMC iterations to discard
nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw
save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,

E(y), which may be slow to compute
verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data
augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data
model.

There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’, as well as a
version in which the Box-Cox parameter is inferred within the MCMC sampler (’box-cox’). Sec-
ond, the transformation can be estimated (before model fitting) using the empirical distribution
of the data y. Options in this case include the empirical cumulative distribution function (CDF),
which is fully nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or
Negative-Binomial (’neg-bin’) distributions. For the parametric distributions, the parameters of the
distribution are estimated using moments (means and variances) of y. Third, the transformation can
be modeled as an unknown, monotone function using I-splines (’ispline’). The Robust Adaptive
Metropolis (RAM) sampler is used for drawing the parameter of the transformation function.

Value

a list with at least the following elements:

• coefficients: the posterior mean of the coefficients
• fitted.values: the posterior mean of the conditional expectation of the counts y
• post.coefficients: posterior draws of the coefficients
• post.fitted.values: posterior draws of the conditional mean of the counts y
• post.pred: draws from the posterior predictive distribution of y
• post.lambda: draws from the posterior distribution of lambda
• post.sigma: draws from the posterior distribution of sigma
• post.log.like.point: draws of the log-likelihood for each of the n observations
• WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion
• p_waic: Effective number of parameters based on WAIC

In the case of transformation="ispline", the list also contains

• post.g: draws from the posterior distribution of the transformation g

• post.sigma.gamma: draws from the posterior distribution of sigma.gamma, the prior standard
deviation of the transformation g() coefficients
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Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5, seed=32)
y = sim_dat$y; X = sim_dat$X

# Linear and nonlinear components:
X_lin = as.matrix(X[,-(1:3)])
X_nonlin = as.matrix(X[,(1:3)])

# STAR: nonparametric transformation
fit = bam_star(y = y, X_lin = X_lin, X_nonlin = X_nonlin)

# What is included:
names(fit)

# Posterior mean of each coefficient:
coef(fit)

# WAIC:
fit$WAIC

# MCMC diagnostics:
plot(as.ts(fit$post.coefficients[,1:3]))

# Posterior predictive check:
hist(apply(fit$post.pred, 1,

function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')

bart_star MCMC Algorithm for BART-STAR

Description

Run the MCMC algorithm for a BART model for count-valued responses using STAR. The trans-
formation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametrically)
for greater flexibility.

Usage

bart_star(
y,
X,
X_test = NULL,
y_test = NULL,
transformation = "np",
y_max = Inf,
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n.trees = 200,
sigest = NULL,
sigdf = 3,
sigquant = 0.9,
k = 2,
power = 2,
base = 0.95,
nsave = 1000,
nburn = 1000,
nskip = 0,
save_y_hat = FALSE,
verbose = TRUE

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X_test n0 x p matrix of predictors for test data

y_test n0 x 1 vector of the test data responses (used for computing log-predictive scores)

transformation transformation to use for the latent process; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)
• "ispline" (transformation is modeled as unknown, monotone function using

I-splines)

y_max a fixed and known upper bound for all observations; default is Inf

n.trees number of trees to use in BART; default is 200

sigest positive numeric estimate of the residual standard deviation (see ?bart)

sigdf degrees of freedom for error variance prior (see ?bart)

sigquant quantile of the error variance prior that the rough estimate (sigest) is placed at.
The closer the quantile is to 1, the more aggressive the fit will be (see ?bart)

k the number of prior standard deviations E(Y|x) = f(x) is away from +/- 0.5. The
response is internally scaled to range from -0.5 to 0.5. The bigger k is, the more
conservative the fitting will be (see ?bart)

power power parameter for tree prior (see ?bart)

base base parameter for tree prior (see ?bart)

nsave number of MCMC iterations to save
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nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,
E(y), which may be slow to compute

verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation. Here, the model in (1) is a Bayesian additive regression tree (BART) model.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data
augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data
model.

There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’, as well as a
version in which the Box-Cox parameter is inferred within the MCMC sampler (’box-cox’). Sec-
ond, the transformation can be estimated (before model fitting) using the empirical distribution
of the data y. Options in this case include the empirical cumulative distribution function (CDF),
which is fully nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or
Negative-Binomial (’neg-bin’) distributions. For the parametric distributions, the parameters of the
distribution are estimated using moments (means and variances) of y. Third, the transformation can
be modeled as an unknown, monotone function using I-splines (’ispline’). The Robust Adaptive
Metropolis (RAM) sampler is used for drawing the parameter of the transformation function.

Value

a list with the following elements:

• post.pred: draws from the posterior predictive distribution of y

• post.sigma: draws from the posterior distribution of sigma

• post.log.like.point: draws of the log-likelihood for each of the n observations

• WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion

• p_waic: Effective number of parameters based on WAIC

• post.pred.test: draws from the posterior predictive distribution at the test points X_test
(NULL if X_test is not given)

• post.fitted.values.test: posterior draws of the conditional mean at the test points X_test
(NULL if X_test is not given)

• post.mu.test: draws of the conditional mean of z_star at the test points X_test (NULL if
X_test is not given)

• post.log.pred.test: draws of the log-predictive distribution for each of the n0 test cases
(NULL if X_test is not given)

• fitted.values: the posterior mean of the conditional expectation of the counts y (NULL if
save_y_hat=FALSE)
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• post.fitted.values: posterior draws of the conditional mean of the counts y (NULL if
save_y_hat=FALSE)

In the case of transformation="ispline", the list also contains

• post.g: draws from the posterior distribution of the transformation g

• post.sigma.gamma: draws from the posterior distribution of sigma.gamma, the prior standard
deviation of the transformation g() coefficients

If transformation="box-cox", then the list also contains

• post.lambda: draws from the posterior distribution of lambda

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# BART-STAR with log-transformation:
fit_log = bart_star(y = y, X = X, transformation = 'log',

save_y_hat = TRUE, nburn=1000, nskip=0)

# Fitted values
plot_fitted(y = sim_dat$Ey,

post_y = fit_log$post.fitted.values,
main = 'Fitted Values: BART-STAR-log')

# WAIC for BART-STAR-log:
fit_log$WAIC

# MCMC diagnostics:
plot(as.ts(fit_log$post.fitted.values[,1:10]))

# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,

function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')

# BART-STAR with nonparametric transformation:
fit = bart_star(y = y, X = X,

transformation = 'np', save_y_hat = TRUE)

# Fitted values
plot_fitted(y = sim_dat$Ey,

post_y = fit$post.fitted.values,
main = 'Fitted Values: BART-STAR-np')

# WAIC for BART-STAR-np:
fit$WAIC

# MCMC diagnostics:
plot(as.ts(fit$post.fitted.values[,1:10]))
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# Posterior predictive check:
hist(apply(fit$post.pred, 1,

function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')

blm_star STAR Bayesian Linear Regression

Description

Posterior inference for STAR linear model

Usage

blm_star(
y,
X,
X_test = NULL,
transformation = "np",
y_max = Inf,
prior = "gprior",
use_MCMC = TRUE,
nsave = 1000,
nburn = 1000,
nskip = 0,
psi = NULL,
compute_marg = FALSE

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X_test n0 x p matrix of predictors for test data

transformation transformation to use for the latent process; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
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• "box-cox" (box-cox transformation with learned parameter)
• "ispline" (transformation is modeled as unknown, monotone function using

I-splines)
• "bnp" (Bayesian nonparametric transformation using the Bayesian boot-

strap)

y_max a fixed and known upper bound for all observations; default is Inf

prior prior to use for the latent linear regression; currently implemented options are
"gprior", "horseshoe", and "ridge"

use_MCMC logical; whether to run Gibbs sampler or Monte Carlo (default is TRUE)

nsave number of MCMC iterations to save (or MC samples to draw if use_MCMC=FALSE)

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

psi prior variance (g-prior)

compute_marg logical; if TRUE, compute and return the marginal likelihood (only available
when using exact sampler, i.e. use_MCMC=FALSE)

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation. Here, the continuous latent data model is a linear regression.

There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’, as well as a
version in which the Box-Cox parameter is inferred within the MCMC sampler (’box-cox’). Sec-
ond, the transformation can be estimated (before model fitting) using the empirical distribution
of the data y. Options in this case include the empirical cumulative distribution function (CDF),
which is fully nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or
Negative-Binomial (’neg-bin’) distributions. For the parametric distributions, the parameters of
the distribution are estimated using moments (means and variances) of y. The distribution-based
transformations approximately preserve the mean and variance of the count data y on the latent
data scale, which lends interpretability to the model parameters. Lastly, the transformation can
be modeled using the Bayesian bootstrap (’bnp’), which is a Bayesian nonparametric model and
incorporates the uncertainty about the transformation into posterior and predictive inference.

The Monte Carlo sampler (use_MCMC=FALSE) produces direct, discrete, and joint draws from the
posterior distribution and the posterior predictive distribution of the linear regression model with a
g-prior.

Value

a list with at least the following elements:

• coefficients: the posterior mean of the regression coefficients

• post.beta: posterior draws of the regression coefficients

• post.pred: draws from the posterior predictive distribution of y
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• post.log.like.point: draws of the log-likelihood for each of the n observations

• WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion

• p_waic: Effective number of parameters based on WAIC

If test points are passed in, then the list will also have post.predtest, which contains draws from
the posterior predictive distribution at test points.

Other elements may be present depending on the choice of prior, transformation, and sampling
approach.

Note

The ’bnp’ transformation is slower than the other transformations because of the way the TruncatedNormal
sampler must be updated as the lower and upper limits change (due to the sampling of g). Thus,
computational improvements are likely available.

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# Fit the Bayesian STAR linear model:
fit = blm_star(y = y, X = X)

# What is included:
names(fit)

# Posterior mean of each coefficient:
coef(fit)

# WAIC:
fit$WAIC

# MCMC diagnostics:
plot(as.ts(fit$post.beta))

# Posterior predictive check:
hist(apply(fit$post.pred, 1,

function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')

confint.lmstar Compute asymptotic confidence intervals for STAR linear regression
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Description

For a linear regression model within the STAR framework, compute (asymptotic) confidence in-
tervals for a regression coefficient of interest. Confidence intervals are computed by inverting the
likelihood ratio test and profiling the log-likelihood.

Usage

## S3 method for class 'lmstar'
confint(object, parm, level = 0.95, ...)

Arguments

object Object of class "lmstar" as output by lm_star

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level confidence level; default is 0.95

... Ignored

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in

Examples

#Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 2)
y = sim_dat$y; X = sim_dat$X[,-1] # remove intercept

# Select a transformation:
transformation = 'np'

#Estimate model
fit = lm_star(y~X, transformation = transformation)

#Confidence interval for all parameters
confint(fit)

credBands Compute Simultaneous Credible Bands

Description

Compute (1-alpha)% credible BANDS for a function based on MCMC samples using Crainiceanu
et al. (2007)
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Usage

credBands(sampFuns, alpha = 0.05)

Arguments

sampFuns Nsims x m matrix of Nsims MCMC samples and m points along the curve

alpha confidence level

Value

m x 2 matrix of credible bands; the first column is the lower band, the second is the upper band

Note

The input needs not be curves: the simultaneous credible "bands" may be computed for vectors. The
resulting credible intervals will provide joint coverage at the (1-alpha) level across all components
of the vector.

ergMean Compute the ergodic (running) mean.

Description

Compute the ergodic (running) mean.

Usage

ergMean(x)

Arguments

x vector for which to compute the running mean

Value

A vector y with each element defined by y[i] = mean(x[1:i])

Examples

# Compare:
ergMean(1:10)
mean(1:10)

# Running mean for iid N(5, 1) samples:
x = rnorm(n = 10^4, mean = 5, sd = 1)
plot(ergMean(x))
abline(h=5)
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gbm_star Fitting STAR Gradient Boosting Machines via EM algorithm

Description

Compute the MLEs and log-likelihood for the Gradient Boosting Machines (GBM) STAR model.
The STAR model requires a *transformation* and an *estimation function* for the conditional mean
given observed data. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or
estimated nonparametrically) for greater flexibility. The estimator in this case is a GBM. Standard
function calls including fitted and residuals apply.

Usage

gbm_star(
y,
X,
X.test = NULL,
transformation = "np",
y_max = Inf,
sd_init = 10,
tol = 10^-10,
max_iters = 1000,
n.trees = 100,
interaction.depth = 1,
shrinkage = 0.1,
bag.fraction = 1

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X.test m x p matrix of out-of-sample predictors

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the
Gaussian MLE standard deviation; default is 10
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tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

n.trees Integer specifying the total number of trees to fit. This is equivalent to the num-
ber of iterations and the number of basis functions in the additive expansion.
Default is 100.

interaction.depth

Integer specifying the maximum depth of each tree (i.e., the highest level of
variable interactions allowed). A value of 1 implies an additive model, a value
of 2 implies a model with up to 2-way interactions, etc. Default is 1.

shrinkage a shrinkage parameter applied to each tree in the expansion. Also known as
the learning rate or step-size reduction; 0.001 to 0.1 usually work, but a smaller
learning rate typically requires more trees. Default is 0.1.

bag.fraction the fraction of the training set observations randomly selected to propose the
next tree in the expansion. This introduces randomnesses into the model fit. If
bag.fraction < 1 then running the same model twice will result in similar but
different fits. Default is 1 (for a deterministic prediction).

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation. The Gaussian model in this case is a GBM.

Value

a list with the following elements:

• fitted.values: the fitted values at the MLEs (training)

• fitted.values.test: the fitted values at the MLEs (testing)

• g.hat a function containing the (known or estimated) transformation

• sigma.hat the MLE of the standard deviation

• mu.hat the MLE of the conditional mean (on the transformed scale)

• z.hat the estimated latent data (on the transformed scale) at the MLEs

• residuals the Dunn-Smyth residuals (randomized)

• residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates

• logLik the log-likelihood at the MLEs

• logLik0 the log-likelihood at the MLEs for the *unrounded* initialization

• lambda the Box-Cox nonlinear parameter

• gbmObj: the object returned by gbm() at the MLEs

• and other parameters that (1) track the parameters across EM iterations and (2) record the
model specifications
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Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate.
In that case, the function returns the *indices* of the data points with infinite latent values, which
are significant outliers under the model. Deletion of these indices and re-running the model is one
option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers
and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental
health. Biometrics. doi:10.1111/biom.13617

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# EM algorithm for STAR (using the log-link)
fit_em = gbm_star(y = y, X = X,

transformation = 'log')

# Evaluate convergence:
plot(fit_em$logLik_all, type='l', main = 'GBM-STAR-log', xlab = 'Iteration', ylab = 'log-lik')

# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);

# Residuals:
plot(residuals(fit_em))
qqnorm(residuals(fit_em)); qqline(residuals(fit_em))

# Log-likelihood at MLEs:
fit_em$logLik

genEM_star Generalized EM estimation for STAR

Description

Compute MLEs and log-likelihood for a generalized STAR model. The STAR model requires a
*transformation* and an *estimation function* for the conditional mean given observed data. The
transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonparametri-
cally) for greater flexibility. The estimator can be any least squares estimator, including nonlinear
models. Standard function calls including coefficients(), fitted(), and residuals() apply.

https://doi.org/10.1111/biom.13617
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Usage

genEM_star(
y,
estimator,
transformation = "np",
y_max = Inf,
sd_init = 10,
tol = 10^-10,
max_iters = 1000

)

Arguments

y n x 1 vector of observed counts

estimator a function that inputs data y and outputs a list with two elements:

1. The fitted values fitted.values
2. The parameter estimates coefficients

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the
Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation.

The expectation-maximization (EM) algorithm is used to produce maximum likelihood estimators
(MLEs) for the parameters defined in the estimator function, such as linear regression coefficients,
which define the Gaussian model for the continuous latent data. Fitted values (point predictions),
residuals, and log-likelihood values are also available. Inference for the estimators proceeds via
classical maximum likelihood. Initialization of the EM algorithm can be randomized to monitor
convergence. However, the log-likelihood is concave for all transformations (except ’box-cox’), so
global convergence is guaranteed.
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There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’, as well as a
version in which the Box-Cox parameter is estimated within the EM algorithm (’box-cox’). Sec-
ond, the transformation can be estimated (before model fitting) using the empirical distribution
of the data y. Options in this case include the empirical cumulative distribution function (CDF),
which is fully nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or
Negative-Binomial (’neg-bin’) distributions. For the parametric distributions, the parameters of the
distribution are estimated using moments (means and variances) of y.

Value

a list with the following elements:

• coefficients the MLEs of the coefficients

• fitted.values the fitted values at the MLEs

• g.hat a function containing the (known or estimated) transformation

• sigma.hat the MLE of the standard deviation

• mu.hat the MLE of the conditional mean (on the transformed scale)

• z.hat the estimated latent data (on the transformed scale) at the MLEs

• residuals the Dunn-Smyth residuals (randomized)

• residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates

• logLik the log-likelihood at the MLEs

• logLik0 the log-likelihood at the MLEs for the *unrounded* initialization

• lambda the Box-Cox nonlinear parameter

• and other parameters that (1) track the parameters across EM iterations and (2) record the
model specifications

Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate.
In that case, the function returns the *indices* of the data points with infinite latent values, which
are significant outliers under the model. Deletion of these indices and re-running the model is one
option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers
and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental
health. Biometrics. doi:10.1111/biom.13617

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# Select a transformation:

https://doi.org/10.1111/biom.13617
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transformation = 'np'

# Example using GAM as underlying estimator (for illustration purposes only)
if(require("mgcv")){

fit_em = genEM_star(y = y,
estimator = function(y) gam(y ~ s(X1)+s(X2),
data=data.frame(y,X)),
transformation = transformation)

}

# Fitted coefficients:
coef(fit_em)

# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);

# Log-likelihood at MLEs:
fit_em$logLik

genMCMC_star Generalized MCMC Algorithm for STAR

Description

Run the MCMC algorithm for STAR given

1. a function to initialize model parameters; and

2. a function to sample (i.e., update) model parameters.

The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated nonpara-
metrically) for greater flexibility.

Usage

genMCMC_star(
y,
sample_params,
init_params,
transformation = "np",
y_max = Inf,
nsave = 1000,
nburn = 1000,
nskip = 0,
save_y_hat = FALSE,
verbose = TRUE

)
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Arguments

y n x 1 vector of observed counts
sample_params a function that inputs data y and a named list params containing

1. mu: the n x 1 vector of conditional means (fitted values)
2. sigma: the conditional standard deviation
3. coefficients: a named list of parameters that determine mu

and outputs an updated list params of samples from the full conditional posterior
distribution of coefficients and sigma (and updates mu)

init_params an initializing function that inputs data y and initializes the named list params
of mu, sigma, and coefficients

transformation transformation to use for the latent data; must be one of
• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf
nsave number of MCMC iterations to save
nburn number of MCMC iterations to discard
nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw
save_y_hat logical; if TRUE, compute and save the posterior draws of the expected counts,

E(y), which may be slow to compute
verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation.

Posterior and predictive inference is obtained via a Gibbs sampler that combines (i) a latent data
augmentation step (like in probit regression) and (ii) an existing sampler for a continuous data
model.

There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’, as well as a
version in which the Box-Cox parameter is inferred within the MCMC sampler (’box-cox’). Sec-
ond, the transformation can be estimated (before model fitting) using the empirical distribution
of the data y. Options in this case include the empirical cumulative distribution function (CDF),
which is fully nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or
Negative-Binomial (’neg-bin’) distributions. For the parametric distributions, the parameters of the
distribution are estimated using moments (means and variances) of y.
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Value

a list with at least the following elements:

• post.pred: draws from the posterior predictive distribution of y

• post.sigma: draws from the posterior distribution of sigma

• post.log.like.point: draws of the log-likelihood for each of the n observations

• WAIC: Widely-Applicable/Watanabe-Akaike Information Criterion

• p_waic: Effective number of parameters based on WAIC

• post.lambda: draws from the posterior distribution of lambda (NULL unless transformation='box-cox')

• fitted.values: the posterior mean of the conditional expectation of the counts y (NULL if
save_y_hat=FALSE)

• post.fitted.values: posterior draws of the conditional mean of the counts y (NULL if
save_y_hat=FALSE)

If the coefficients list from init_params and sample_params contains a named element beta, e.g.
for linear regression, then the function output contains

• coefficients: the posterior mean of the beta coefficients

• post.beta: draws from the posterior distribution of beta

• post.othercoefs: draws from the posterior distribution of any other sampled coefficients,
e.g. variance terms

If no beta exists in the parameter coefficients, then the output list just contains

• coefficients: the posterior mean of all coefficients

• post.beta: draws from the posterior distribution of all coefficients

Additionally, if init_params and sample_params have output mu_test, then the sampler will out-
put post.predtest, which contains draws from the posterior predictive distribution at test points.

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# STAR: log-transformation:
fit_log = genMCMC_star(y = y,

sample_params = function(y, params) sample_lm_gprior(y, X, params),
init_params = function(y) init_lm_gprior(y, X),
transformation = 'log')

# What is included:
names(fit_log)

# Posterior mean of each coefficient:
coef(fit_log)

# WAIC for STAR-log:
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fit_log$WAIC

# MCMC diagnostics:
plot(as.ts(fit_log$post.beta[,1:3]))

# Posterior predictive check:
hist(apply(fit_log$post.pred, 1,

function(x) mean(x==0)), main = 'Proportion of Zeros', xlab='');
abline(v = mean(y==0), lwd=4, col ='blue')

getEffSize Summarize of effective sample size

Description

Compute the summary statistics for the effective sample size (ESS) across posterior samples for
possibly many variables

Usage

getEffSize(postX)

Arguments

postX An array of arbitrary dimension (nsims x ... x ...), where nsims is the num-
ber of posterior samples

Value

Table of summary statistics using the function summary().

Examples

# ESS for iid simulations:
rand_iid = rnorm(n = 10^4)
getEffSize(rand_iid)

# ESS for several AR(1) simulations with coefficients 0.1, 0.2,...,0.9:
rand_ar1 = sapply(seq(0.1, 0.9, by = 0.1), function(x) arima.sim(n = 10^4, list(ar = x)))
getEffSize(rand_ar1)
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g_bc Box-Cox transformation

Description

Evaluate the Box-Cox transformation, which is a scaled power transformation to preserve continuity
in the index lambda at zero. Negative values are permitted.

Usage

g_bc(t, lambda)

Arguments

t argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the Box-Cox function at the given input(s) t.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda
= 1/2), and the log transformation (lambda = 0).

Examples

# Log-transformation:
g_bc(1:5, lambda = 0); log(1:5)

# Square-root transformation: note the shift and scaling
g_bc(1:5, lambda = 1/2); sqrt(1:5)

g_bnp Bayesian bootstrap-based transformation

Description

Compute one posterior draw from the smoothed transformation implied by (separate) Bayesian
bootstrap models for the CDFs of y and X.

Usage

g_bnp(y, xt_Sigma_x = rep(0, length(y)), z_grid = NULL)
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Arguments

y n x 1 vector of observed counts

xt_Sigma_x n x 1 vector of t(X_i) Sigma_theta X_i, where Sigma_theta is the prior vari-
ance

z_grid optional vector of grid points for evaluating the CDF of z (Fz)

Value

A smooth monotone function which can be used for evaluations of the transformation at each pos-
terior draw.

Examples

# Sample some data:
y = rpois(n = 200, lambda = 5)
# Compute 100 draws of g on a grid:
t = seq(0, max(y), length.out = 50) # grid
g_post = t(sapply(1:100, function(s) g_bnp(y)(t)))
# Plot together:
plot(t, t, ylim = range(g_post), type='n', ylab = 'g(t)', main = 'Bayesian bootstrap posterior: g')
temp = apply(g_post, 1, function(g) lines(t, g, col='gray'))
# And the posterior mean of g:
lines(t, colMeans(g_post), lwd=3)

g_cdf Cumulative distribution function (CDF)-based transformation

Description

Compute a CDF-based transformation using the observed count data. The CDF can be estimated
nonparametrically or parametrically based on the Poisson or Negative Binomial distributions. In
the parametric case, the parameters are determined based on the moments of y. Note that this is a
fixed quantity and does not come with uncertainty quantification.

Usage

g_cdf(y, distribution = "np")

Arguments

y n x 1 vector of observed counts

distribution the distribution used for the CDF; must be one of

• "np" (empirical CDF)
• "pois" (moment-matched marginal Poisson CDF)
• "neg-bin" (moment-matched marginal Negative Binomial CDF)



26 g_inv_approx

Value

A smooth monotone function which can be used for evaluations of the transformation.

Examples

# Sample some data:
y = rpois(n = 500, lambda = 5)

# Empirical CDF version:
g_np = g_cdf(y, distribution = 'np')

# Poisson version:
g_pois = g_cdf(y, distribution = 'pois')

# Negative binomial version:
g_negbin = g_cdf(y, distribution = 'neg-bin')

# Plot together:
t = 1:max(y) # grid
plot(t, g_np(t), type='l')
lines(t, g_pois(t), lty = 2)
lines(t, g_negbin(t), lty = 3)

g_inv_approx Approximate inverse transformation

Description

Compute the inverse function of a transformation g based on a grid search.

Usage

g_inv_approx(g, t_grid)

Arguments

g the transformation function

t_grid grid of arguments at which to evaluate the transformation function

Value

A function which can be used for evaluations of the (approximate) inverse transformation function.
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Examples

# Sample some data:
y = rpois(n = 500, lambda = 5)

# Empirical CDF transformation:
g_np = g_cdf(y, distribution = 'np')

# Grid for approximation:
t_grid = seq(1, max(y), length.out = 100)

# Approximate inverse:
g_inv = g_inv_approx(g = g_np, t_grid = t_grid)

# Check the approximation:
plot(t_grid, g_inv(g_np(t_grid)), type='p')
lines(t_grid, t_grid)

g_inv_bc Inverse Box-Cox transformation

Description

Evaluate the inverse Box-Cox transformation. Negative values are permitted.

Usage

g_inv_bc(s, lambda)

Arguments

s argument(s) at which to evaluate the function

lambda Box-Cox parameter

Value

The evaluation(s) of the inverse Box-Cox function at the given input(s) s.

Note

Special cases include the identity transformation (lambda = 1), the square-root transformation (lambda
= 1/2), and the log transformation (lambda = 0).

#’ @examples # (Inverse) log-transformation: g_inv_bc(1:5, lambda = 0); exp(1:5)

# (Inverse) square-root transformation: note the shift and scaling g_inv_bc(1:5, lambda = 1/2);
(1:5)^2
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init_lm_gprior Initialize linear regression parameters assuming a g-prior

Description

Initialize the parameters for a linear regression model assuming a g-prior for the coefficients.

Usage

init_lm_gprior(y, X, X_test = NULL)

Arguments

y n x 1 vector of data

X n x p matrix of predictors

X_test n0 x p matrix of predictors at test points (default is NULL)

Value

a named list params containing at least

1. mu: vector of conditional means (fitted values)

2. sigma: the conditional standard deviation

3. coefficients: a named list of parameters that determine mu

Additionally, if X_test is not NULL, then the list includes an element mu_test, the vector of con-
ditional means at the test points

Note

The parameters in coefficients are:

• beta: the p x 1 vector of regression coefficients components of beta

Examples

# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# Initialize:
params = init_lm_gprior(y = y, X = X)
names(params)
names(params$coefficients)
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lm_star Fitting frequentist STAR linear model via EM algorithm

Description

Compute the MLEs and log-likelihood for the STAR linear model. The regression coefficients are
estimated using least squares within an EM algorithm.

Usage

lm_star(
formula,
data = NULL,
transformation = "np",
y_max = Inf,
sd_init = 10,
tol = 10^-10,
max_iters = 1000

)

Arguments

formula an object of class "formula" (see lm for details on model specification)

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model; like lm, if not found in
data, the variables are taken from environment(formula)

transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the
Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

Details

Standard function calls including coefficients, fitted, and residuals apply. Fitted values are
the expectation at the MLEs, and as such are not necessarily count-valued.
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Value

an object of class "lmstar", which is a list with the following elements:

• coefficients the MLEs of the coefficients

• fitted.values the fitted values at the MLEs

• g.hat a function containing the (known or estimated) transformation

• ginv.hat a function containing the inverse of the transformation

• sigma.hat the MLE of the standard deviation

• mu.hat the MLE of the conditional mean (on the transformed scale)

• z.hat the estimated latent data (on the transformed scale) at the MLEs

• residuals the Dunn-Smyth residuals (randomized)

• residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates

• logLik the log-likelihood at the MLEs

• logLik0 the log-likelihood at the MLEs for the *unrounded* initialization

• lambda the Box-Cox nonlinear parameter

• and other parameters that (1) track the parameters across EM iterations and (2) record the
model specifications

Note

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate.
In that case, the function returns the *indices* of the data points with infinite latent values, which
are significant outliers under the model. Deletion of these indices and re-running the model is one
option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers
and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental
health. Biometrics. doi:10.1111/biom.13617

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X[,-1] # remove intercept

# Fit model
fit_em = lm_star(y ~ X)

# Fitted coefficients:
coef(fit_em)

# Fitted values:
y_hat = fitted(fit_em)
plot(y_hat, y);

https://doi.org/10.1111/biom.13617
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# Residuals:
plot(residuals(fit_em))
qqnorm(residuals(fit_em)); qqline(residuals(fit_em))

plot_coef Plot the estimated regression coefficients and credible intervals

Description

Plot the estimated regression coefficients and credible intervals for the linear effects in up to two
models.

Usage

plot_coef(
post_coefficients_1,
post_coefficients_2 = NULL,
alpha = 0.05,
labels = NULL

)

Arguments

post_coefficients_1

Nsims x p matrix of simulations from the posterior distribution of the p coeffi-
cients, where Nsims is the number of simulations

post_coefficients_2

Nsims x p matrix of simulations from the posterior distribution of the p coeffi-
cients from another model

alpha confidence level for the credible intervals

labels p dimensional string of labels for the coefficient names

Value

A plot of regression coefficients and credible intervals for 1-2 models
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plot_fitted Plot the fitted values and the data

Description

Plot the fitted values, plus pointwise credible intervals, against the data. For simulations, one may
use the true values in place of the data.

Usage

plot_fitted(y, post_y, y_hat = NULL, alpha = 0.05, ...)

Arguments

y n x 1 vector of data

post_y Nsims x n matrix of simulated fitted values, where Nsims is the number of sim-
ulations

y_hat n x 1 vector of fitted values; if NULL, use the pointwise sample mean colMeans(post_y)

alpha confidence level for the credible intervals

... other arguments for plotting

Value

A plot with the fitted values and the credible intervals against the data

plot_pmf Plot the empirical and model-based probability mass functions

Description

Plot the empirical probability mass function, i.e., the proportion of data values y that equal j for
each j=0,1,..., together with the model-based estimate of the probability mass function based on
the posterior predictive distribution.

Usage

plot_pmf(y, post.pred, error.bars = FALSE, alpha = 0.05)

Arguments

y n x 1 vector of data

post.pred nsave draws from the posterior predictive distribution of y

error.bars logical; if TRUE, include errors bars on the model-based PMF

alpha confidence level for the credible intervals
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Value

A plot of the empirical PMF of y along with a PMF estimate from the model posterior predictive
distribution

predict.lmstar Predict method for response in STAR linear model

Description

Outputs predicted values based on an lmstar fit and optionally prediction intervals based on the the
(plug-in) predictive distribution for the STAR linear model

Usage

## S3 method for class 'lmstar'
predict(object, newdata = NULL, interval = FALSE, level = 0.95, N = 1000, ...)

Arguments

object Object of class "lmstar" as output by lm_star

newdata An optional matrix/data frame in which to look for variables with which to pre-
dict. If omitted, the fitted values are used.

interval logical; whether or not to include prediction intervals (default FALSE)

level Level for prediction intervals

N number of Monte Carlo samples from the posterior predictive distribution used
to approximate intervals; default is 1000

... Ignored

Details

If interval=TRUE, then predict.lmstar uses a Monte Carlo approach to estimating the (plug-in)
predictive distribution for the STAR linear model. The algorithm iteratively samples (i) the latent
data given the observed data, (ii) the latent predictive data given the latent data from (i), and (iii)
(inverse) transforms and rounds the latent predictive data to obtain a draw from the integer-valued
predictive distribution.

The appropriate quantiles of these Monte Carlo draws are computed and reported as the prediction
interval.

Value

Either a a vector of predictions (if interval=FALSE) or a matrix of predictions and bounds with
column names fit, lwr, and upr
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Note

The “plug-in" predictive distribution is a crude approximation. Better approaches are available
using the Bayesian models, e.g. blm_star, which provide samples from the posterior predictive
distribution.

For highly skewed responses, prediction intervals especially at lower levels may not include the
predicted value itself, since the mean is often much larger than the median.

Examples

# Simulate data with count-valued response y:
x = seq(0, 1, length.out = 100)
y = rpois(n = length(x), lambda = exp(1.5 + 5*(x -.5)^2))

# Estimate model--assume a quadratic effect (better for illustration purposes)
fit = lm_star(y~x+I(x^2), transformation = 'sqrt')

#Compute the predictive draws for the test points (same as observed points here)
#Also compute intervals using plug-in predictive distribution
y_pred = predict(fit, interval=TRUE)

# Plot the results
plot(x, y, ylim = range(y, y_pred), main = 'STAR: Predictions and 95% PI')
lines(x,y_pred[,"fit"], col='black', type='s', lwd=4)
lines(x, y_pred[,"lwr"], col='darkgray', type='s', lwd=4)
lines(x, y_pred[,"upr"], col='darkgray', type='s', lwd=4)

pvals Compute coefficient p-values for STAR linear regression using likeli-
hood ratio test

Description

For a linear regression model within the STAR framework, compute p-values for regression coeffi-
cients using a likelihood ratio test. It also computes a p-value for excluding all predictors, akin to a
(partial) F test.

Usage

pvals(object)

Arguments

object Object of class "lmstar" as output by lm_star

Value

a list of p+1 p-values, one for each predictor as well as the joint p-value excluding all predictors
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Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_lm(n = 100, p = 2)
y = sim_dat$y; X = sim_dat$X[,-1] # remove intercept

# Select a transformation:
transformation = 'np'

#Estimate model
fit = lm_star(y~X, transformation = transformation)

#Compute p-values
pvals(fit)

randomForest_star Fit Random Forest STAR with EM algorithm

Description

Compute the MLEs and log-likelihood for the Random Forest STAR model. The STAR model
requires a *transformation* and an *estimation function* for the conditional mean given observed
data. The transformation can be known (e.g., log or sqrt) or unknown (Box-Cox or estimated
nonparametrically) for greater flexibility. The estimator in this case is a random forest. Standard
function calls including fitted and residuals apply.

Usage

randomForest_star(
y,
X,
X.test = NULL,
transformation = "np",
y_max = Inf,
sd_init = 10,
tol = 10^-10,
max_iters = 1000,
ntree = 500,
mtry = max(floor(ncol(X)/3), 1),
nodesize = 5

)

Arguments

y n x 1 vector of observed counts

X n x p matrix of predictors

X.test m x p matrix of out-of-sample predictors
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transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
• "box-cox" (box-cox transformation with learned parameter)

y_max a fixed and known upper bound for all observations; default is Inf

sd_init add random noise for EM algorithm initialization scaled by sd_init times the
Gaussian MLE standard deviation; default is 10

tol tolerance for stopping the EM algorithm; default is 10^-10;

max_iters maximum number of EM iterations before stopping; default is 1000

ntree Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times. Default is 500.

mtry Number of variables randomly sampled as candidates at each split. Default is
p/3.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time). Default is 5.

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation.

The expectation-maximization (EM) algorithm is used to produce maximum likelihood estimators
(MLEs) for the parameters defined in the The fitted values are computed using out-of-bag samples.
As a result, the log-likelihood is based on out-of-bag prediction, and it is similarly straightforward
to compute out-of-bag squared and absolute errors.

Value

a list with the following elements:

• fitted.values: the fitted values at the MLEs based on out-of-bag samples (training)

• fitted.values.test: the fitted values at the MLEs (testing)

• g.hat a function containing the (known or estimated) transformation

• sigma.hat the MLE of the standard deviation

• mu.hat the MLE of the conditional mean (on the transformed scale)

• z.hat the estimated latent data (on the transformed scale) at the MLEs

• residuals the Dunn-Smyth residuals (randomized)

• residuals_rep the Dunn-Smyth residuals (randomized) for 10 replicates
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• logLik the log-likelihood at the MLEs

• logLik0 the log-likelihood at the MLEs for the *unrounded* initialization

• lambda the Box-Cox nonlinear parameter

• rfObj: the object returned by randomForest() at the MLEs

• and other parameters that (1) track the parameters across EM iterations and (2) record the
model specifications

Note

Since the random forest produces random predictions, the EM algorithm will never converge ex-
actly.

Infinite latent data values may occur when the transformed Gaussian model is highly inadequate.
In that case, the function returns the *indices* of the data points with infinite latent values, which
are significant outliers under the model. Deletion of these indices and re-running the model is one
option, but care must be taken to ensure that (i) it is appropriate to treat these observations as outliers
and (ii) the model is adequate for the remaining data points.

References

Kowal, D. R., & Wu, B. (2021). Semiparametric count data regression for self-reported mental
health. Biometrics. doi:10.1111/biom.13617

Examples

# Simulate data with count-valued response y:
sim_dat = simulate_nb_friedman(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X

# EM algorithm for STAR (using the log-link)
fit_em = randomForest_star(y = y, X = X,

transformation = 'log',
max_iters = 100)

# Fitted values (out-of-bag)
y_hat = fitted(fit_em)
plot(y_hat, y);

# Residuals:
plot(residuals(fit_em))
qqnorm(residuals(fit_em)); qqline(residuals(fit_em))

# Log-likelihood at MLEs (out-of-bag):
fit_em$logLik

https://doi.org/10.1111/biom.13617
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roaches Data on the efficacy of a pest management system at reducing the num-
ber of roaches in urban apartments.

Description

Data on the efficacy of a pest management system at reducing the number of roaches in urban
apartments.

Usage

roaches

Format

## ‘roaches‘ A data frame with 262 obs. of 6 variables:

y Number of roaches caught

roach1 Pretreatment number of roaches

treatment Treatment indicator

senior Indicator for only elderly residents in building

exposure2 Number of days for which the roach traps were used

Source

Gelman and Hill (2007); package ‘rstanarm‘

round_floor Rounding function

Description

Define the rounding operator associated with the floor function. The function also returns zero
whenever the input is negative and caps the value at y_max, where y_max is a known upper bound
on the data y (if specified).

Usage

round_floor(z, y_max = Inf)

Arguments

z the real-valued input(s)

y_max a fixed and known upper bound for all observations; default is Inf
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Value

The count-valued output(s) from the rounding function.

Examples

# Floor function:
round_floor(1.5)
round_floor(0.5)

# Special treatmeant of negative numbers:
round_floor(-1)

sample_lm_gprior Sample the linear regression parameters assuming a g-prior

Description

Sample the parameters for a linear regression model assuming a g-prior for the coefficients.

Usage

sample_lm_gprior(y, X, params, psi = NULL, XtX = NULL, X_test = NULL)

Arguments

y n x 1 vector of data

X n x p matrix of predictors

params the named list of parameters containing

1. mu: vector of conditional means (fitted values)
2. sigma: the conditional standard deviation
3. coefficients: a named list of parameters that determine mu

psi the prior variance for the g-prior

XtX the p x p matrix of crossprod(X) (one-time cost); if NULL, compute within
the function

X_test matrix of predictors at test points (default is NULL)

Value

The updated named list params with draws from the full conditional distributions of sigma and
coefficients (along with updated mu and mu_test if applicable).

Note

The parameters in coefficients are:

• beta: the p x 1 vector of regression coefficients components of beta
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Examples

# Simulate data for illustration:
sim_dat = simulate_nb_lm(n = 100, p = 5)
y = sim_dat$y; X = sim_dat$X
# Initialize:
params = init_lm_gprior(y = y, X = X)
# Sample:
params = sample_lm_gprior(y = y, X = X, params = params)
names(params)
names(params$coefficients)

simBaS Compute Simultaneous Band Scores (SimBaS)

Description

Compute simultaneous band scores (SimBaS) from Meyer et al. (2015, Biometrics). SimBaS uses
MC(MC) simulations of a function of interest to compute the minimum alpha such that the joint
credible bands at the alpha level do not include zero. This quantity is computed for each grid point
(or observation point) in the domain of the function.

Usage

simBaS(sampFuns)

Arguments

sampFuns Nsims x m matrix of Nsims MCMC samples and m points along the curve

Value

m x 1 vector of simBaS

Note

The input needs not be curves: the simBaS may be computed for vectors to achieve a multiplicity
adjustment.

The minimum of the returned value, PsimBaS_t, over the domain t is the Global Bayesian P-Value
(GBPV) for testing whether the function is zero everywhere.
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simulate_nb_friedman Simulate count data from Friedman’s nonlinear regression

Description

Simulate data from a negative-binomial distribution with nonlinear mean function.

Usage

simulate_nb_friedman(
n = 100,
p = 10,
r_nb = 1,
b_int = log(1.5),
b_sig = log(5),
sigma_true = sqrt(2 * log(1)),
seed = NULL

)

Arguments

n number of observations

p number of predictors

r_nb the dispersion parameter of the Negative Binomial dispersion; smaller values
imply greater overdispersion, while larger values approximate the Poisson dis-
tribution.

b_int intercept; default is log(1.5).

b_sig regression coefficients for true signals; default is log(5.0).

sigma_true standard deviation of the Gaussian innovation; default is zero.

seed optional integer to set the seed for reproducible simulation; default is NULL
which results in a different dataset after each run

Details

The log-expected counts are modeled using the Friedman (1991) nonlinear function with inter-
actions, possibly with additional Gaussian noise (on the log-scale). We assume that half of the
predictors are associated with the response, i.e., true signals. For sufficiently large dispersion pa-
rameter r_nb, the distribution will approximate a Poisson distribution. Here, the predictor variables
are simulated from independent uniform distributions.

Value

A named list with the simulated count response y, the simulated design matrix X, and the true
expected counts Ey.
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Note

Specifying sigma_true = sqrt(2*log(1 + a)) implies that the expected counts are inflated by
100*a% (relative to exp(X*beta)), in addition to providing additional overdispersion.

Examples

# Simulate and plot the count data:
sim_dat = simulate_nb_friedman(n = 100, p = 10);
plot(sim_dat$y)

simulate_nb_lm Simulate count data from a linear regression

Description

Simulate data from a negative-binomial distribution with linear mean function.

Usage

simulate_nb_lm(
n = 100,
p = 10,
r_nb = 1,
b_int = log(1.5),
b_sig = log(2),
sigma_true = sqrt(2 * log(1)),
ar1 = 0,
seed = NULL

)

Arguments

n number of observations

p number of predictors (including the intercept)

r_nb the dispersion parameter of the Negative Binomial dispersion; smaller values
imply greater overdispersion, while larger values approximate the Poisson dis-
tribution.

b_int intercept; default is log(1.5), which implies the expected count is 1.5 when all
predictors are zero

b_sig regression coefficients for true signals; default is log(2.0), which implies a twofold
increase in the expected counts for a one unit increase in x

sigma_true standard deviation of the Gaussian innovation; default is zero.

ar1 the autoregressive coefficient among the columns of the X matrix; default is
zero.

seed optional integer to set the seed for reproducible simulation; default is NULL
which results in a different dataset after each run
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Details

The log-expected counts are modeled as a linear function of covariates, possibly with additional
Gaussian noise (on the log-scale). We assume that half of the predictors are associated with the
response, i.e., true signals. For sufficiently large dispersion parameter r_nb, the distribution will
approximate a Poisson distribution. Here, the predictor variables are simulated from independent
standard normal distributions.

Value

A named list with the simulated count response y, the simulated design matrix X (including an
intercept), the true expected counts Ey, and the true regression coefficients beta_true.

Note

Specifying sigma_true = sqrt(2*log(1 + a)) implies that the expected counts are inflated by
100*a% (relative to exp(X*beta)), in addition to providing additional overdispersion.

Examples

# Simulate and plot the count data:
sim_dat = simulate_nb_lm(n = 100, p = 10);
plot(sim_dat$y)

spline_star Estimation for Bayesian STAR spline regression

Description

Compute samples from the predictive distributions of a STAR spline regression model using either
a Gibbs sampling approach or exact Monte Carlo sampling (default is Gibbs sampling which scales
better for large n).

Usage

spline_star(
y,
tau = NULL,
transformation = "np",
y_max = Inf,
psi = NULL,
nsave = 1000,
use_MCMC = TRUE,
nburn = 1000,
nskip = 0,
verbose = TRUE

)
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Arguments

y n x 1 vector of observed counts
tau n x 1 vector of observation points; if NULL, assume equally-spaced on [0,1]
transformation transformation to use for the latent data; must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "bnp" (Bayesian nonparametric transformation using the Bayesian boot-

strap)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)
y_max a fixed and known upper bound for all observations; default is Inf
psi prior variance (1/smoothing parameter); if NULL, update in MCMC
nsave number of MCMC iterations to save (or number of Monte Carlo simulations)
use_MCMC logical; whether to run Gibbs sampler or Monte Carlo (default is TRUE)
nburn number of MCMC iterations to discard
nskip number of MCMC iterations to skip between saving iterations, i.e., save every

(nskip + 1)th draw
verbose logical; if TRUE, print time remaining

Details

STAR defines a count-valued probability model by (1) specifying a Gaussian model for continuous
*latent* data and (2) connecting the latent data to the observed data via a *transformation and
rounding* operation. Here, the continuous latent data model is a spline regression.

There are several options for the transformation. First, the transformation can belong to the *Box-
Cox* family, which includes the known transformations ’identity’, ’log’, and ’sqrt’. Second, the
transformation can be estimated (before model fitting) using the empirical distribution of the data
y. Options in this case include the empirical cumulative distribution function (CDF), which is fully
nonparametric (’np’), or the parametric alternatives based on Poisson (’pois’) or Negative-Binomial
(’neg-bin’) distributions. For the parametric distributions, the parameters of the distribution are
estimated using moments (means and variances) of y. The distribution-based transformations ap-
proximately preserve the mean and variance of the count data y on the latent data scale, which
lends interpretability to the model parameters. Lastly, the transformation can be modeled using the
Bayesian bootstrap (’bnp’), which is a Bayesian nonparametric model and incorporates the uncer-
tainty about the transformation into posterior and predictive inference.

Value

a list with the following elements:

• post.pred: nsave x n samples from the posterior predictive distribution at the observation
points tau

• marg_like: the marginal likelihood (only if use_MCMC=FALSE; otherwise NULL)
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Note

For the ’bnp’ transformation there are numerical stability issues when psi is modeled as unknown.
In this case, it is better to fix psi at some positive number.

Examples

# Simulate some data:
n = 100
tau = seq(0,1, length.out = n)
y = round_floor(exp(1 + rnorm(n)/4 + poly(tau, 4)%*%rnorm(n=4, sd = 4:1)))

# Sample from the predictive distribution of a STAR spline model:
fit = spline_star(y = y, tau = tau)

# Compute 90% prediction intervals:
pi_y = t(apply(fit$post.pred, 2, quantile, c(0.05, .95)))

# Plot the results: intervals, median, and smoothed mean
plot(tau, y, ylim = range(pi_y, y))
polygon(c(tau, rev(tau)),c(pi_y[,2], rev(pi_y[,1])),col='gray', border=NA)
lines(tau, apply(fit$post.pred, 2, median), lwd=5, col ='black')
lines(tau, smooth.spline(tau, apply(fit$post.pred, 2, mean))$y, lwd=5, col='blue')
lines(tau, y, type='p')

warpDLM Posterior Inference for warpDLM model with latent structural DLM

Description

This function outputs posterior quantities and forecasts from a univariate warpDLM model. Cur-
rently two latent DLM specifications are supported: local level and the local linear trend.

Usage

warpDLM(
y,
type = c("level", "trend"),
transformation = c("np", "identity", "log", "sqrt", "pois", "neg-bin"),
y_max = Inf,
R0 = 10,
nsave = 5000,
nburn = 5000,
nskip = 1,
n.ahead = 1

)
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Arguments

y the count-valued time series

type the type of latent DLM (must be either level or trend)

transformation transformation to use for the latent process (default is np); must be one of

• "identity" (identity transformation)
• "log" (log transformation)
• "sqrt" (square root transformation)
• "np" (nonparametric transformation estimated from empirical CDF)
• "pois" (transformation for moment-matched marginal Poisson CDF)
• "neg-bin" (transformation for moment-matched marginal Negative Bino-

mial CDF)

y_max a fixed and known upper bound for all observations; default is Inf

R0 the variance for the initial state theta_0; default is 10

nsave number of MCMC iterations to save

nburn number of MCMC iterations to discard

nskip number of MCMC iterations to skip between saving iterations, i.e., save every
(nskip + 1)th draw

n.ahead number of steps to forecast ahead

Value

A list with the following elements:

• V_post: posterior draws of the observation variance

• W_post: posterior draws of the state update variance(s)

• fc_post: draws from the forecast distribution (of length n.ahead)

• post_pred: draws from the posterior predictive distribution of y

• g_func: transformation function

• g_inv_func: inverse transformation function

• KFAS_mod: the final KFAS model representing the latent DLM
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