Package: countSTAR 1.0.2.9000

countSTAR: Flexible Modeling of Count Data

For Bayesian and classical inference and prediction with count-valued data, Simultaneous Transformation and Rounding (STAR) Models provide a flexible, interpretable, and easy-to-use approach. STAR models the observed count data using a rounded continuous data model and incorporates a transformation for greater flexibility. Implicitly, STAR formalizes the commonly-applied yet incoherent procedure of (i) transforming count-valued data and subsequently (ii) modeling the transformed data using Gaussian models. STAR is well-defined for count-valued data, which is reflected in predictive accuracy, and is designed to account for zero-inflation, bounded or censored data, and over- or underdispersion. Importantly, STAR is easy to combine with existing MCMC or point estimation methods for continuous data, which allows seamless adaptation of continuous data models (such as linear regressions, additive models, BART, random forests, and gradient boosting machines) for count-valued data. The package also includes several methods for modeling count time series data, namely via warped Dynamic Linear Models. For more details and background on these methodologies, see the works of Kowal and Canale (2020) <doi:10.1214/20-EJS1707>, Kowal and Wu (2022) <doi:10.1111/biom.13617>, King and Kowal (2023) <doi:10.1214/23-BA1394>, and Kowal and Wu (2023) <arxiv:2110.12316>.

Authors:Brian King [aut, cre], Dan Kowal [aut]

countSTAR_1.0.2.9000.tar.gz
countSTAR_1.0.2.9000.zip(r-4.5)countSTAR_1.0.2.9000.zip(r-4.4)countSTAR_1.0.2.9000.zip(r-4.3)
countSTAR_1.0.2.9000.tgz(r-4.4-x86_64)countSTAR_1.0.2.9000.tgz(r-4.4-arm64)countSTAR_1.0.2.9000.tgz(r-4.3-x86_64)countSTAR_1.0.2.9000.tgz(r-4.3-arm64)
countSTAR_1.0.2.9000.tar.gz(r-4.5-noble)countSTAR_1.0.2.9000.tar.gz(r-4.4-noble)
countSTAR_1.0.2.9000.tgz(r-4.4-emscripten)countSTAR_1.0.2.9000.tgz(r-4.3-emscripten)
countSTAR.pdf |countSTAR.html
countSTAR/json (API)
NEWS

# Install 'countSTAR' in R:
install.packages('countSTAR', repos = c('https://bking124.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bking124/countstar/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • roaches - Data on the efficacy of a pest management system at reducing the number of roaches in urban apartments.

On CRAN:

4.00 score 2 stars 3 scripts 222 downloads 29 exports 63 dependencies

Last updated 1 years agofrom:63a4c3c31b. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-win-x86_64OKNov 20 2024
R-4.5-linux-x86_64OKNov 20 2024
R-4.4-win-x86_64OKNov 20 2024
R-4.4-mac-x86_64OKNov 20 2024
R-4.4-mac-aarch64OKNov 20 2024
R-4.3-win-x86_64OKNov 20 2024
R-4.3-mac-x86_64OKNov 20 2024
R-4.3-mac-aarch64OKNov 20 2024

Exports:a_jbam_starbart_starblm_starcredBandsergMeang_bcg_bnpg_cdfg_inv_approxg_inv_bcgbm_stargenEM_stargenMCMC_stargetEffSizeinit_lm_gpriorlm_starplot_coefplot_fittedplot_pmfpvalsrandomForest_starround_floorsample_lm_gpriorsimBaSsimulate_nb_friedmansimulate_nb_lmspline_starwarpDLM

Dependencies:alabamabootcliclustercodacolorspacedbartsdeldirevdfansifarverFastGPgbmggplot2gluegridExtragtableinterpisobandKFASlabelinglatticelifecyclemagrittrMASSMatrixMatrixModelsmcmcMCMCpackmgcvmunsellmvtnormnleqslvnlmenumDerivpillarpkgconfigplyrqrngquantregR2WinBUGSR6randomForestrbenchmarkRColorBrewerRcppRcppArmadilloRcppEigenreshaperlangscalesspacefillrSparseMspikeSlabGAMsplines2survivaltibbleTruncatedNormaltruncdistutf8vctrsviridisLitewithr

Getting Started with countSTAR

Rendered fromcountSTAR.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-07-10
Started: 2023-03-28

Readme and manuals

Help Manual

Help pageTopics
Inverse rounding functiona_j
Fit Bayesian Additive STAR Model with MCMCbam_star
MCMC Algorithm for BART-STARbart_star
STAR Bayesian Linear Regressionblm_star
Compute asymptotic confidence intervals for STAR linear regressionconfint.lmstar
Compute Simultaneous Credible BandscredBands
Compute the ergodic (running) mean.ergMean
Box-Cox transformationg_bc
Bayesian bootstrap-based transformationg_bnp
Cumulative distribution function (CDF)-based transformationg_cdf
Approximate inverse transformationg_inv_approx
Inverse Box-Cox transformationg_inv_bc
Fitting STAR Gradient Boosting Machines via EM algorithmgbm_star
Generalized EM estimation for STARgenEM_star
Generalized MCMC Algorithm for STARgenMCMC_star
Summarize of effective sample sizegetEffSize
Initialize linear regression parameters assuming a g-priorinit_lm_gprior
Fitting frequentist STAR linear model via EM algorithmlm_star
Plot the estimated regression coefficients and credible intervalsplot_coef
Plot the fitted values and the dataplot_fitted
Plot the empirical and model-based probability mass functionsplot_pmf
Predict method for response in STAR linear modelpredict.lmstar
Compute coefficient p-values for STAR linear regression using likelihood ratio testpvals
Fit Random Forest STAR with EM algorithmrandomForest_star
Data on the efficacy of a pest management system at reducing the number of roaches in urban apartments.roaches
Rounding functionround_floor
Sample the linear regression parameters assuming a g-priorsample_lm_gprior
Compute Simultaneous Band Scores (SimBaS)simBaS
Simulate count data from Friedman's nonlinear regressionsimulate_nb_friedman
Simulate count data from a linear regressionsimulate_nb_lm
Estimation for Bayesian STAR spline regressionspline_star
Posterior Inference for warpDLM model with latent structural DLMwarpDLM